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The dynamics of a perfectly symmetric type-A multiple drop is studied. Up to first 
order in Reynolds number a force balance predicts the size ratios of the two 
constituents of such a drop to be unique for each system. Inertial effects are shown 
(a) to be destabilizing and (b) to exclude the possibility of obtaining perfectly 
concentric type-A droplets in a diffusion column. This latter conclusion is strengthened 
further by the sedimentation results. 

1. Introduction 
Interest in the motion of particles in a fluid medium has existed for many years. 

A vast body of literature dealing with bubbles, drops and solid particles has grown 
up in engineering, applied mathematics and physics. Our understanding of the 
behaviour of single particles is reviewed by Clift, Grace & Weber (1978). 

In multiple emulsions the dispersed drops themselves contain smaller droplets. 
Depending upon the number and size of internal droplets, the emulsions are classified 
as type-A, type-B or type-C (Florence & Whitehill 1981). Type-A drops contain one 
(usually large) internal droplet, type-B drops contain several internal drops, and in 
type-C drops a vast number of internal droplets are entrapped. 

Multiple emulsions are of interest in such diverse fields as the separation of 
hydrocarbons (Li 1971), bloodoxygenation (Lik Asher 1973), treatment ofwastewater 
(Li & Shrier 1972), metal recovery from leaching ores (Martin & Davies 1976), 
prolongation of drug release (Brodin, Kavaliunas & Frank 1978), and direct-contact 
heat exchangers (Sideman & Taitel 1964). 

Multiple emulsions can be obtained by double emulsification, in which a primary 
(single) emulsion is reemulsified (Martin & Davies 1976). Depending upon the 
surfactants used, multiple drops of type A, B or C result (Florence & Whitehill 1981). 
Multiple droplets of type A can also be obtained in a spray or diffusion column, 
containing two immiscible liquids, say liquids one and two. Dispersed droplets or 
bubbles rise through the heavier liquid. A multiple droplet is formed when the single 
droplet breaks through the previously plane onetwo interface (Li & Asher 1973; 
Mercier et al. 1974). 

For gas bubbles rising through water and then through mineral oils (as the lower 
( 1 )  and upper (2) liquid respectively) marked differences in shape, trajectory and rise 
velocity between the two-phase air-water bubble and normal air bubbles in the same 
oil have been found (Mercier et al. 1974). Since, in that case, the lower liquid (1) has 
the higher surface tension, all gas bubbles will cross the onetwo interphase. 
According to Selecki & Gradon (1972), no multiple drops should form. Experimentally 
this is indeed found, although only for bubbles of radius ri less than 1.7 mm. A t  this 
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critical size the first differences were found, and the terminal rise velocity through 
the continuous phase two was less than that of the single bubble but larger than for 
a rigid sphere (of the bubble density) rising through the oil. As a matter of fact, for 
the most viscous oil used (kinematic viscosity d2) = 0.55 cmz/s) the rigid-sphere limit 
was almost reached (see figure 3 of Mercier et al. 1974). Using the data supplied, we 
thus see that in this case no difference from the behaviour of single bubbles was found 
unless the Reynolds number of region i (based on bubble radius) exceeded the values 
194.7, 3.5 and 13 in regions one, two and three respectively (three is the inside or 
bubble region). 

I n  the opposite case, when the lower liquid (1) has the lower surface tension, air 
bubbles have to  exceed a certain critical size in order to break through the interface. 
According to Selecki and Gradon (1972) the critical radius ricr is given by 

where di) denotes the surface tension of phase i and p(i)  the mass density. If the lower 
liquid (1) is Freon 113 ( p @ )  = 1.58 g/cm3, dl) = 19 dyn/cm) and liquid two isa98.8 yo 
aqueous glycerol solution (p(2)  = 1.26 g/cm3, d2) = 64 dyn/cm), (1 .l) predicts 
ricr = 2.20 mm, quite close to  the experimentally determined critical radius of 
1.70 mm (Mori et al. 1977; see also table 1, system 6B). I n  addition Selecki & Gradon 
(1972) conclude that bubbles exceeding that size always have to form multiple drops ; 
and the observation of Mori et al. (1977) that  the rise velocity is lower than that of 
a (single) air bubble but larger than that of a rigid sphere seems to  substantiate that  
claim. The lowest Reynolds numbers of Mori et al. are 25.6, 1.5 x and 0.9 for 
regions one, two and three respectively. 

Both Mercier et al. (1972) and Mori et al. (1977) observed that the lower liquid 
encapsulated the air bubble quite non-uniformly, especially for the larger-size 
bubbles. Studying these configurations may indeed require ‘ spherical-cap ’ studies, 
like the ones introduced by Johnson & Sadhal (1983). To be applicable to  the 
situations at hand, inertial effects have to  be incorporated. 

Thus multiple drops, produced in a diffusion column, cannot be studied by using 
a low-Reynolds-number analysis. This contrasts with the double-emulsification 
technique, where not only perfectly symmetric type-A multiple drops can be 
obtained (Florence & Whitehall 1981), but in addition the particle Reynolds number 
is very small in general. It is the purpose of the present study to concentrate on these 
drops in the low-Reynolds-number range. A complete analysis of multiple drops 
would not only have to  include hydrodynamic factors, but would also have to take 
account of thermodynamic considerations (including breakdown mechanisms) and 
the role of surfactants. By concentrating solely on the hydrodynamics, we severely 
limit the applicability of our results to real systems. Yet, since hydrodynamic 
considerations do matter, we can discriminate between sensible and useless (future) 
research. To be more specific, our investigation into perfectly symmetric type-A 
droplets will be useful only for very specific size ratios (for a given system) in 
sedimentation.7 Studying other size ratios is therefore futile, unless other (non- 
hydrodynamic) influences are taken into account. 

t For all systems studied we do find the perfectly symmetric type-A configuration to be possible 
in sedimentation. This is astonishing, given the fact that the density ratios used varied considerably : 
from 8 x  loT4 to 1.29 (inside to shell) and from 0.67 to 1.41 for the shell density relative to the 
continuous fluid. According to our results, extreme density ratios imply small internal droplets. 
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In  $2 the creeping-motion solution of a spherical drop encapsulating a centrally 
located spherical drop is studied. In $3 inertial effects are considered and the resulting 
deformations of each drop (internal and external) are calculated. In $4 we ask 
whether such a multiple drop can ever attain a terminal state in sedimentation. 
Comparison with experimental observations will be made throughout the text, and 
the shortcomings - and strong points - of this analysis will be stated clearly. 

This paper constitutes a first attempt towards an understanding of the hydro- 
dynamic factors governing the behaviour of multiple drops. It is hoped that it will 
stimulate further research in this fascinating and challenging area. 

2. Statement of the problem 
Consider the axisymmetric streaming flow of an incompressible fluid past a 

stationary type-A multiple drop. The situation is depicted in figure 1. Denoting by 
a superscript i the quantity in question appropriate for region i, the steady-state 
equations of motion and continuity are respectively 

We shall assume that the body force per unit volume is conservative, 

which guarantees that a flow-free rest state exists. This being the case, it proves 
convenient to put 

(2.3) 

with $(*) the hydrodynamic pressure. Note that this split implies 

(2.4) 

For streaming flow with velocity tr, (of magnitude woo) in the direction & (a unit 

$2) = $(I) - & ( I ) ,  

f ( U  = @(O + f ( 0 ,  

with f ( I )  the hydrodynamic part of the stress tensor f ( I ) .  

vector), the faraway boundary conditions are 

8 2 )  = tr, as ?+ao. (2.5) 

Here r" = I r'l , with r' = (r", O , $ )  the position vector of some point relative to the centre 
of the drop. For the type-A multiple drop considered in this study three regions can 
be defined: the inner dispersed phase three of volume V, = $(a.~)~, the fluid shell of 
volume V, = 3ca3( 1 -  c3) encapsulating this inner region, and the continuous phase, 
region two, which occupies all space outside region one. Quite clearly, the velocity 
must be fmite at the drop centre, i.e. 

iW finite at F = 0. (2.6) 
If S,, denotes the infinitely thin interface between fluids i and j the boundary 

conditions are 

(i) continuity of tangential velocities 

(2.7) fi(cs = (1), 
t vt 
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Phase 2 

Phase 3 

FIQURE 1. Coordinate system used in describing the flow around 
a perfectly symmetric type-A multiple drop. 

(ii) vanishing of normal velocities 

8;' = 0, 8:) = 0,  

(iii) equilibrium between the applied loads, A *  f(,)  - R e  f(n, and the interfacial-stress 
resultants (e.g. Aris 1962) 

(2-9) 
- - a  R.Tc')-A.Tcn+T.~:(tf) = 0. 

ar, 
Here a/a?, is the surface gradient @/a?, = (6-AA)*a/ar), R is the unit normal of S,, 
(directed from the inner phase j to the outer phase i) and are the interfacial 
stresses. 

A consequence of (2.9) is 

dS [R. f ( i )  -A. f ( n ]  = 0. 

By means of (2.4), this can be rewritten as 

(2.10) 

(2.11) 

where 6, denotes the volume enclosed by the surface Si,. Here p(,) stands for the 
hydrodynamic or drag force. Equation (2.1 1 )  thus constitutes the appropriate force 
balance. For the special case in which the body forcefcl) is spatially constant, say 
-Z(O, (2.11) becomes 

(2.12) 

Quite clearly, the steady-state axisymmetric situation we consider is possible only 
if 

pco -pen + ( g ( i ) - @ , ) )  v,, = 0.  

is colinear with &, i.e. Z(,) = d i ) k .  
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To make progress, the constitutive equation for the interface has to be specified. 

(2.13) 

In the simplest case only an isotropic (interfacial) tension ut, is admitted : 

$5 = a,,(S - Ad). 

Assuming in addition that at, is constant leads to the two equations 

q1 = P f ) ,  (2.14) 

(2.15) T!!k - flJ& = Kt, ut,, 

with (2.16) 

the mean curvature of the surface S,. 
Equations (2.1) supplemented by the boundary conditions (2.5)-(2.8), (2.14) and 

(2.15) constitute the set of equations one has to solve. Unfortunately, for a deformable 
particle like the multiple drop the interface S,  is unknown a priori and has to be 
obtained simultaneously along with the solution of the problem. 

To make progress analytically, serious approximation cannot be avoided. To this 
end we assume (a) that inertial effects are small and (b) that both interfacial tensions 
are so large that each of the two interfaces will never deviate much from spherical. 
This then dictates our method of approach : we shall apply the boundary conditions 
(2.5)-(2.8) and (2.14) at (our initial guess for St,) to obtain a unique solution to 
the set of equations (2.1). Equation (2.15) is reserved to evaluate AS$), i.e. the 
deviation of St, for our initial guess. Although one could - in principle - repeat that 
procedure with Sit) = S$) + ASZ!) as (improved) initial guess, we shall be content with 
Sit). Phrased differently, we assume higher-order deformations ASbj) = Sbyl) - S# 
(1 > 1) to be small in comparison with first-order deformation AS$). 

Before calculating AS!;) it  seems advantageous to introduce dimensionless 
quantities : 

r = ?/a ,  v(0  = iW/vm, 

The relevant equations now read 

I 
subject to the boundary conditions (to dominant order) 

v@)-?-G as r+m,  

d3) finite at  r = 0, 

a t  each spherical interface Sit). 

v(t )  = 

vy' = 0, 

(2.17) 

(2.18) 

(2.19) 
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Here 

denotes the Reynolds number of region i, 
'I. = p / ' I ( j ) ,  

Pij = P / P  

ai 

is the viscosity ratio and (for later use) 

(0 (i) 

(2.20 a)  

(2.20 b) 

(2.20 c) 

is the density ratio. 

to SU)) in question, the first-order deformation of the 2-1 interface is governed by 
If the mean curvature Ri, is scaled with the radius ri3 of the sphere (corresponding 

and similarly, for the 1-3 interface, 

Here 

denotes the capillary number, 

p = cos8, K,, = a&, K, ,  = ad?,,, 

and P,(p) denotes the Legendre polynomial of degree n. 
For completeness we also list the balance equations (2.12). With 

pi, = p(o& = av ' Ic i 'Jw&,  
Q) 

the force balances (2.12) become 

and 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

3. The creeping-motion limit 
As long as the Reynolds numbers Re(i) for each region are sufficiently small i t  makes 

sense to neglect inertia altogether, as a first approximation, i.e. to set Re@) = 0 in the 
equations of motion (2.18). Attaching a subscript 0 to the velocity and pressure fields 
to  indicate the creeping-motion limit, we have for (uf), pf)) 

= - [A?) + B(0 2 r-3 + CCi) 2 rZ + D(i) 2 r -1 1 p l(CL), ( 3 . 1 ~ )  

(3.lb) 
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2.0 2.5i-- 0 0.2 0.4 0.6 0.8 1 .o 

FIQURE 2. The functionsf, g1 and h as defined by (2.9) and (2.12). 

The functions J, are the Gegenbauer functions of order n and degree -f and l 7 f )  
is a constant. Since at large distances from the sphere the velocity has to be equal 
to &, the free-stream velocity, and since it has to be finite a t  the centre of the particle, 
we know that 

/@ = - 1, = 0, B(3) 2 = D(3) 2 = 0. (3.2) 

Equations (3.1) imply 

= - nit) + 6[Bf) r-4 + Cf) r + +D$') r-2] Pl(p), (3.3a) 

As a consequence the hydrodynamic force Fit) is given by 

= 4nD('). 
2 (3.4) 

To determine the eight unknown coefficients Bf), Of), AF), BP),  Cp), Dc), A?) and 
Cp) we use the eight boundary conditions (2.19) and S$), i.e. at the two surfaces r = 1 
and r = € respectively. The result for Dp) is? 

with = 4712713+2713(1+732)(1-E)f+(1-E)2g1' (3.6) 

In  these equations f and g1 are positive-valued functions of e, listed explicitly in 
Appendix A and plotted in figure 2. Although D f )  is a function not only of but of 
the various viscosity ratios as well, i t  can be shown rigorously that it is monotonically 
increasing with increasing E (rl2, q13 fixed), 

t This is in perfect agreement with a recent result of Rushton & Davies (1983). 
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E 

FIQURE 3. The particle drag coefficient DB) as a function of E 

for the systems 1C and 2 of table 1 .  

Thus the drag force on the particle is larger than that for a droplet of viscosity r](l) 
and less than the drag force for a rigid sphere (see also figure 3). To understand why 
the rigid-sphere limit results for very thin liquid membranes, a look a t  the streamlines 
is helpful. As shown in figure 4, the steady-state conditions require an internal 
circulation to be set up such that the direction of the streamlines in the inner region 
are reversed compared to  that in a single fluid droplet. As E approaches one, all 
internal circulation is suppressed, since otherwise the fluid would have to change 
directions over the vanishingly small distance (1  - E )  a. Thus in the E +  1 limit the 
multiple drop consists of a stationary fluid encapsulated by an immobile fluid shell, 
so that it behaves like a solid sphere.t I n  that case mass and heat transfer from the 
inner drop to the solvent (and vice versa) will thus be by diffusion alone. 

Since the hydrodynamic force exerted by the liquid shell upon the inner droplet 
is related to  Dil), i t  seems worthwhile to list that  result too: 

The positive-valued function h depends only upon E (see Appendix A), and is shown 
in figure 2. The fact that  DC) is strictly non-positive can be explained by reference 
to the streamline pattern of figure 3. For fixed viscosity ratios, DP) decreases 
monotonically from its E = 0 limit of zero to - [ 2 ~ ~ ~ ( 1 - ~ ) ] - l  for e + l  (see also 
figure 5).  Note that for infinitely thin shells ( E +  1 )  membrane stresses are involved, 
which, for a liquid membrane, involve the membrane viscosity r(')( 1 - E )  a rather than 
~ ( l ) .  It is for this reason, and our way of non-dimensionalizing, that  all coefficients 
that characterize the shell region blow up like ( l - e ) - l  for E +  1 .  

All the other coefficients are of no direct concern to us, and we refer to Appendix 
A, which lists explicitly all coefficients of the creeping-motion solution. With (oo, po)  

t The same conclusion can also be reached from dimensional reasoning alone. 
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FIGURE 4. The creeping-motion streamline pattern for a type-A multiple droplet. 

known in all regions, we next turn to the normal stresses to see whether or not the 
interfaces remain spherical. 

As far as the 2-1 interface is concerned, we turn to (2.21). Explicitly it reads 

where use has been made of (3.3a, b) and the continuity of the tangential stresses has 
been employed. It is clear from (3.4) that the term multiplying P1(p) in (3.9) is nothing 
but the force balance (2.25). Consequently, (3.9) reduces to 

- np + VIZ US") = K 21' (3.10) 

This implies that the mean curvature is identically constant, i.e. the outer surface 
remains undeformed (K21 = 2). Thus, after putting (without loss of generality) Uh2) 
equal to zero, we have ng" = 2 k = 2 AL 

A,, v,,?p)' 
(3.11) 

By the same token, the inside surface (1-3) does not deform either. Explicitly we find 
that the pressure difference between the inside and the membrane is given by 

2 = €Al3( - nb" + q31 np). (3.12) 

Under creeping-flow conditions none of the surfaces deform, irrespective of the 
magnitude of the capillary number. Deformation is a nonlinear effect, and for 
Newtonian fluids inertia is the only source of nonlinearity. 

8 Y L Y  160 
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h 

I 

E 

FIGURE 5. The scaled inner-droplet drag coefficient Up) as a function 
of E for systems 1C and 2 of table 1 .  

4. Inertial effects 

Inertial effects will be small whenever Re($), the Reynolds number (based on a )  in 
region i is small. This implies that inside the particle (i.e. in regions 3 and 1) the 
equations of motion 

a a 
ar ar (4.1) Re(0 u(1) * _  ~ ( 0  = _ _  p(0  +VZu(i) 

can be solved by means of a regular perturbation expansion 

where the fields ( u ~ ~ ' , p ~ ~ )  satisfy 

with 

(4.4) 
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I$$ = B$6)[2C$t) r-1 -fB$O r-61 +&'LO2 r4 

+D$O[ -$C$O ,-ID($) r-Z-lB(O r-61, (4.5b) 12 2 4 2  

Hg) = iJ)$O[Af) -B(O 2 r-3 - c(f) 2 r2 + D f )  r-11, (4.5c) 

(4.5d) 

It is interesting to see that in the inside region (region 3) the functions H g )  and 
Kg) vanish identically. This implies that the full Naviedtokes equations are 
satisfied by the fields ( ~ i ~ ) , p i ~ ) + R e ( ~ ) p , ) ,  i.e. that only the pressure is affected by 
inertia. In our case, regions 1 and 2 (the shell and continuous fluid phase respectively) 
require small inertial effects, so that (4.2) are restricted to Re($) < 1, i = 1,2. 
Supplemented by the general solution to the homogeneous equation (4.3), the fields 
(vyi,pi\)) are known. In order to get some information about the necessary 
homogeneous terms, we turn to region 2. It is well established that close to the sphere, 
i.e. for T less than some critical distance rC of order l /Re@) ,  a regular perturbation 
like the one just used for the inside regions still works. Outside this region, i.e. for 
r < r,, inertia dominates. Scaling distances in this outer region with rc (the particle 
appears as a 'point '), i.e. introducing 

(4.6) 

Kg) = Dig) [ - +A$$) - 1BCS 4 2  r-3 + C('J 2 r2 - 1D(Q 4 2  r-11. 

p = r/rc  = r Re@), 

gives the Oseen equation. For the axisymmetric case under consideration, the general 
solution is known (Lamb 1932). Denoting by vp and v8 the components of V,  the 
velocity according to Oseen's equation, we deduce the p < 1 behaviour of V to be 

(4.7a) V ~ + { ~ + R ~ ( ~ ) [ - ~ B , + ~ B , , ] }  1 Pl(,u)-Re(2)O B P( 2 ,u)+O(Re(2))' 
4 

Comparing with the inner solution ui2) for r >> 1 determines B,: 

B, = Dp). (4.8) 
With B, determined, (4.7) suggests that (3.2) be rewritten as 

db) = [ 1 + f Re@) Dp)] u(*) 0 + Re(t) up) + . . . , 
p(*) = [ 1 + f Re@) Di2)] pii) + Re($) p?) + . . . , 

(4.9a) 

(4.9b) 

with  pi*)) of the form (recall (4.4)) 

pi') = Ii')(r) P2(,u) + I f ) ( r ) ,  (4.10a) 

v::' = H(')(r) Pz(,u), (4.10b) 

(4.10~)  

subject to the boundary conditions 

8-2 



222 P.  0. Brunn and T .  Roden 

Utilizing now the general solution of the Stokes equation given by Happel & Brenner 
(1973), the functions appearing in (4.10) are 

Iii)(r) = Ii$(r) - [7Cf)  r2 + 2Df) ~ ~ 1 ,  ( 4 . 1 2 ~ )  

Iii)(r) = ZIf)+Ii$(r) ,  (4.12b) 

H(O(p.1 = H(i) P ( r )  - [Af) r + Br) r-4 + CiO r3 + D(i) 3 r-21, (4 .12~)  

K(*)(r) = K;)(r)+[3Ait)r-2Bii) rP4+5Oi) 3 r I. (4.12d) 

Since Ai2) = - 1,  the boundary conditions (4.11) are automatically satisfied by H, 
and Kp. This implies 

= 0, cp) = 0, ( 4 . 1 3 ~ )  

while finiteness a t  the centre requires 

Bf) = 0 , Di3) = 0. (4.13b) 

The remaining eight coefficients Bi2), Di2), A?), Bil), Cg) ,  Dp) ,  Ap)  and Cp) are 
determined by means of the same boundary conditions used previously in the 
creeping-flow limit. 

It is readily checked that the fields (uv) ,p i l ) )  of the form (4.10) do not give rise to 
any forces Fit). This implies that the dimensional drag force exerted upon the particle 
is given by 

ft@) = 47c~+~)aw, Di2)[1 +a Re(2) Di2) +o(Re@))] f .  (4.14) 

Since it is physically clear that Di2) has to be positive, we see that inertia always 
increases the drag, as expected. 

By the same token, the dimensional drag force exerted by the liquid shell on the 
inside fluid is 

ft(l) = 4~7(')av, Dp)[  1 +: Re(2) Of) + o(Re('))] f .  (4.15) 

Thus to this order of approximation the ratio of the drag forces 

p / p ( ' )  = VI2 Dp/Dp' (4.16) 

is the same as in the creeping-motion limit. Higher-order inertia effects and/or 
explicitly taking the deformation into account are needed in order for this ratio to 
become dependent upon particle size a. 

To see whether the particle does deform, it is sufficient to concentrate solely on 
the fields (ui*), p i i ) ) .  Proceeding as before, it can be shown that the normal component 
of the stress vector tit) = R *  TY) is of the form 

= a@) +p p 2 ( Pu)? (4.17) 

with p("(r) = 2H(L)'(r) -I\t)(r). (4.18) 

The prime indicates an ordinary derivative. The first term (involving the as) is of 
no concern, since, in conjunction with (3.10), it merely allows us to determine the 
pressure constants Hi"'. With a term proportional to Pz appearing now in (2.21) and 
(2.22), each interface deforms into a spheroid, i.e. 

To = 1 + ~ 2 , ~ 2 ( P ) ?  ( 4 . 1 9 ~ )  

ri = d1+82,P,(P)), (4.19 b)  
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with? 

Here 

(4.20~)  

(4.21) 

denotes the Weber number in region (i). The requirement that each deformation be 
small requires We(,) and We(') to be small. We should emphasize at this point that 
We is proportional to v2,, so that the deformation is proportional to v2, for v, + O .  
This clearly illustrates the nonlinearity of the effect. 

Explicit expressions for a,, and SSi are listed in Appendix B. It follows from these 
results that for s+O, S,, tends to zero (linearly in 8); while S,, becomes 

This is the well-known result for a droplet (Taylor & Acrivos 1964). In  the opposite 
limit s+l ,  (4.20a,b) imply 

(4.23) 

For s + l  the characteristic lengthscale for region 1 has to be the membrane 
thickness a(1-s). Consequently the appearance of a factor 1 -s  in (4.23) was to be 
expected. What is unexpected - and physically inadmissible - is the fact that S2, and 

are not equal for s+ 1. This implies that, as far as the deformation is concerned, 
our results do not allow us to take the s+1 limit. If we postulate the continuum 
concept down to s+ 1, then for s x 1 our scaling process no longer works, since the 
membrane thickness 1 --8 enters as an independent lengthscale (Johnson & Sadhal 
1983). High 'lubrication' pressures p( l )  would have to be reckoned with, a concept 
neglected in the present study. 

Since the expressions for the deformations S,, and S,, are so complicated, general 
statements are almost impossible to make. Table 1 lists a number of systems (taken 
from the literature) that we have studied. Systems 2,5A, 6A and 6B are characterized 
by a large solvent viscosity (q12 S lO-l, qa2 ;5 lod3). As a consequence, all coefficients 
(from Ail) to Dk3)) change rather rapidly for s close to one (see also figures 2 and 5) .  
In  this s-range the functions S,, and S,, for these systems show rather large and almost 
erratic changes. For system 6A this happens in the range 0.97 < s < 1. For smaller 
s, S,, is strictly negative (oblate spheroid), while S,, twice changes sign: once for E 

close to zero, where S,, first becomes negative, and a second time at some intermediate 
6, where it again becomes positive (prolate spheroid). For system 6A the corresponding 
s-values are 0.01 and 0.14 respectively. The magnitude of S,, is small over the whole 
range before the fluctuations occur. It is interesting to see that none of these systems 
has been observed in the perfectly symmetric type-A configuration envisioned by us. 

t The mean curvature of a particle of the form r = 1 +En 6, Pn is 

K = 2 + E  (n(n+1)-2)6,Pn+O(b). 
n 
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for system 1A. 

For systems 5 and 6 a diffusion column was used, and the corresponding Reynolds 
numbers are rather large (see $1) .  The encapsulating liquid was observed to be 
concentrated on the rear of the inside bubble. System 2, on the other hand, is not 
of type A, but rather of type B (Ulbrecht, Stroeve & Prabodh 1980). We included 
it - as well as the other type-B system (system 3) - in the table in order to see whether 
our hydrodynamic results would somehow enable us to discriminate between type-A 
and type-B or type-C multiple drops. 

For all other systems of table 1 the deformations are not only one-sided, but of 
the same type too. The outside deforms into an oblate spheroid and the inside into 
a prolate one. Figure 6, based on the data of system lA,  actually is typical for all 
other systems too. The shape of the deformed particle is shown in figure 7. It is 
apparent from these graphs that the shell thickness is least at  the poles, which would 
thus be likely points for rupture. If we put 

S,, = We(,) $,,, = We(') $2i. (4.24) 

The condition for rupture ( r ,  = ri) reads 

(4.25) 

If 8, denotes the point of intersection of the right- and left-hand sides of this equation 
then the dependence of 6, on particle size is seen to reside in the Weber number. 
Increasing the particle size requires smaller and smaller values of 8 in order for type-A 
droplets to exist (see figure 8). Li's (1971) observation that decreasing the droplet 
size greatly stabilized the droplets may be due (at least partly) to this effect. 
Alternatively, if multiple drops do exist, with a volume ratio V,/ V, of encapsulating 
fluid relative to the inside volume of less than (1  - E ~ ) / - E ; ,  then these drops can never 
be symmetric type-A droplets. Multiple drops generated in a diffusion column all seem 
to fall into that category. 
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Deformed double emulsion drop 

FIGURE 7. The deformed shape for system IA for E = 0.88 and We(*) = 0.1 (We(') = 0.1133). 

0.6 - 0.6 - 

0.4 - 

0 0.2 0.4 0.6 0.8 1 .o 

FIGURE 8. The point of rupture of the shell due to deformation caused by inertia as functions of 
E with We(%) as parameter for system 1A. The curved lines represent the right-hand side of (4.25), 
and the critical thickness 6, for rupture is the point of intersection with the function 1 --e (i.e. the 
left-hand side of (4.25)). Only inside droplets smaller than E ,  could exist. 

E 

5. Sedimentation in a fluid at rest 
I n  the previous two chapters we assumed the multiple drop to  be held stationary 

by some external force in a moving fluid. In order to utilize these results for 
sedimentation (&(l) = -p($)g*r, or 8(1) = -p(f)g) we have to require that the particle 
will reach a terminal velocity vt ( = - V,). This being the case, the force balances (2.12) 
read 

(5.1) F(2) -fS(l) + (p"' +') v,g = 0, 
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p(a) = p@) e* = 1 is a root; a second root 

TABLE 2. The number of roots of (4.6) 

e* < 1 is possible if 69") < 4~(@-331(~) 

with V, = @a3 the total volume of the drop.? Similarly 

P(1) + (p(3)-p(l)) v,g = 0, v, = @(UE)3. (5.2) 

Since both equations have to be satisfied simultaneously, it  is clear that the physical 
parameters of the system (E, a, p({) and 7'") have to be related. Phrased differently, 
if the fluids involved are known (i.e. p({) and 7(#) are known) then only for very selected 
values of E will (5.1) and (5.2) furnish the same terminal velocity q. To see this relation 
explicitly we first deduce from (5.1) and (5.2) an alternative relation 

fS@) +[p("V~+p(3)v,-p(2)~,]g = 0, (5.3) 

which is the force balance for the particle as a whole. 
In order to satisfy (5.3) and (5.4) simultaneously the following must be true : 

Recalling (4.16), it follows that the physical parameters are related by 

Since the right-hand side of this equation is strictly non-positive, no E, 0 < E < 1, 
exists that will solve (5.5) unless (l-p21)/(p31-l) < 0. As a matter of fact, the 
left-hand side of (4.6) increases monotonically from its E = 0 value of 

712(1-p21)/(p31-1)7 
with a horizontal slope towards r12( 1 -p2J/( 1 -p13) for E +  1,  which it reaches with 
the slope 3q12. On the other hand, the non-positive right-hand side of (4.6) has the 
following behaviour at these limits 

[ - 3 7 1 2 ( 1 - ~ ) + 0 ( ( 1 - ~ ) 2 )  as ~ + l .  

This behaviour and a careful examination of figures 2 and 5 reveals the existence of 
one minimum of the right-hand side. Consequently we can write down the number 
of solutions of (5.5) as in table 2. 

t Note that we have incompressible fluids, so that the volume remains unchanged no matter 
how the particle deforms. 
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€* E 

FIGURE 9 (a-c). For caption see facing page. 

According to this table, (5.5) may have more than one root - termed e*. Testing 
all systems of table 1 we found only one system that has multiple roots: system 2 
(see figure 9a). Yet, as pointed out in 54, this is one system for which the multiple 
drop is actually of type B. Since system 3 also seems to  be of type B (Halwachs, 
Flashel & Schungel 1980) but has only one root, no conclusion with respect to  the 
number of roots of (5.5) and the type of multiple drop (A, B or C) can be reached. 

For all other systems only one root was found (see table 1 : e*). This indicates that  
the size ratio of the inside to the shell region should be unique, i.e. that symmetric 
type-A droplets should be geometrically identical for a given system. 

Before discussing our prediction of E* for the systems listed in table 1, it is worth 
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-6 4 
I 1 I 1 

0 0.2 0.4 0.6 0.8 1 .o 
€ €* 

FIGURE 9. The size E* of the inside droplet as determined by a force balance for sedimentation. 
The cutpoint(s) furnish the admissible root E*.  (a) System 2;  (b )  system 1C; (c) system 4. 

while to point out a few general features. First, if the inside and continuous fluid 
densities match ( ~ ( ~ 1  = P ( ~ ) )  then E* = 1 is always a solution. As indicated in table 2, 
this will be the only solution if the double emulsion is of the W/O/W type, while 
for an O/W/O double emulsions a second root E* < 1 may have to be reckoned with. 
Secondly, if we introduce the mean multiple drop density p(m) by 

(5.7) p(m) v, = p(3) v, +p‘” v,, 
then (up to the term rl12) the left-hand side of (5.5) can be related to p(m) by 

In order for (5.5) to have a solution the right-hand side of (5.8) has to be negative. 
This then implies that the density difference ~ ( ~ ) - - p ( ’ )  dictates the sign of the terminal 
velocity w,. > p(l )  the particle will rise, while for p(3) < p(l)  the particle will settle. 
While this feature was to be expected on the basis of the different signs of the drag 
coefficients Di2) and Oil), it  is in contradiction to all experiments in which the multiple 
droplet is generated by the rise of one droplet through a layer of heavy fluid 
( ~ ( ~ 1  < p( l ) )  underlying a lighter fluid ( P ( ~ )  < p(2) < p“)). Whether or not it suffices in 
these cases to study type-A drops with the inside droplet displaced from the centre 
or whether an onlv partially encapsulated ‘inside’ drop is called for has to await  
further study.t 

It is interesting to see that for all systems studied (5.5) has a solution. This implies 
that with an inside drop radius of E* a perfectly symmetric type-A drop arrangement 
is possible in sedimentation. Whether or not such an arrangement is an absolutely 
stable one (or whether experimental systems adjust the shell thickness to satisfy the 

t Note that Mercier et d. (1974) speak of an encapsulating layer of variable thickness. Li t Asher 
(1973) specifically mention complete encapsulation of the rising oxygen bubble. 
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constraint of a perfectly symmetric configuration) is another matter, which will 
require further study. We already know that our prediction for systems 5 and 6 cannot 
be used for the experiments, which were performed using a diffusion column. Only 
if these multiple drops could be produced by different means, such that low Reynolds 
numbers would be involved, would there be any basis for comparison. 

In contrast with these rather large-Reynolds-number cases are the multiple 
droplets generated by means of a double emulsification. Figure 9(b) shows our 
sedimentation result for system 1C (no experimental data for E* have been reported 
for any of the systems of group l),  while figure 9(c) is based on the data of system 4. 
The graphs for system 3 are similar to figure 9(b), with E* = 0.84 as root of (5.5). 
Since system 3 forms type-B multiple droplets, this result should be read as meaning 
59.3 % of the drop to consist of liquid 3. What makes this system interesting for our 
situation is the sensitivity of E* to the values of the densities p(3) and p@). Since no 
data have been provided, we estimated (in g/cm3) p@) to be 0.988 and p(3) as 1.00. 
Changing these values to 1 .OO and 1.01 respectively decreases E* from 0.84 to 0.66. 
On the other hand, using the values 0.998 and 0.998 respectively furnishes e* = 1.  
As mentioned before, E* = 1 is always a (double) root of (5.5) for p@) = p(3) (see 
figure 9c). On the basis of this extreme sensitivity of E* to the actual values for p@) 
and ~ ( ~ 1 ,  the discrepancy between our prediction B* = 1 for system 4 and the experi- 
mental result E* = 0.338 may partly be based on our assumption of pZ2 = 1.t Based 
on the extreme sensitivity of our results to the actual data, we expect rather dramatic 
changes if surfactants are accounted for (either a la Frumkin-Levich or by means 
of a stagnant cap). Experimentally the fundamental role of surfactants is well 
established: Starting from the very same single emulsion and merely changing the 
surfactants in the second emulsification step, one obtains - depending upon the type 
of surfactants used - either (perfectly symmetric) type-A -B or -C multiple drops 
(Florence & Whitehill 1981). In addition, these latter authors used a rather 
concentrated double emulsion. This contrasts with our individual type-A droplet 
study, which would be relevant only in a highly dilute double emulsion. If we assume 
that part of the abovementioned discrepancy is due to this difference in particle 
concentration, then the conclusion to be reached is that the thickness of the liquid 
shell should increase with increasing particle concentration. Since the resistance to 
mass transfer increases with increasing membrane thickness (e.g. Halwachs et al. 
1980), the increase in permeation due to an increase in particle concentration (and 
consequently in surface area for the mass transfer) would at  least partly be offset by 
such an increase in membrane thickness. 

6. Summary and conclusion 
In  this paper we have studied the hydrodynamic behaviour of a type-A double 

emulsion droplet in the low-Reynolds-number region. For droplets generated in a 
diffusion column, differences from single-droplet behaviour do not seem to show up 
until the droplets are sufficiently large (Mercier et al. 1974; Mori et al. 1977). This 
implies that not all of the three Reynolds numbers involved are small. Thus such 
multiple drops are outside the scope of our low-Reynolds-number analysis. As a 
matter of fact, our inertial results show that such drops cannot exist in a perfectly 
concentric (and symmetric) configuration (recall (4.25) and the remarks following it). 
In addition, our sedimentation result, that perfectly concentric type-A drops will rise 

f All of our results for system 4 are estimates, since no data have been provided, 
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for p@) > p( l )  and settle for p(3) > p( l ) ,  would not even allow the possibility of 
experimentally obtaining such droplets. They cannot be treated by our analysis, and 
it seems more appropriate to use medium-Reynolds-number calculations for shell 
regions of variable thickness. A zero-Reynolds-number analysis for spherical-cap 
regions has been attempted (Johnson & Sadhal 1983). 

As far as multiple droplets, obtained by double emulsifications, are concerned we 
are in better shape, because of the low Reynolds numbers of those experiments. We 
do predict large particle size to be a source of particle breakdown, which seems to 
be in agreement with the experiments (Li 1981). On the basis of a force balance for 
sedimentation, we predict for type-A drops a unique size ratio for inside to total 
volume. Attempts to compare this result quantitatively with experiments encountered 
difficulties, since only for one single system has this ratio been listed. Unfortunately 
no other data had been provided. Estimating the data needed did not produce the 
expected agreement. Reasons for that discrepancy -. other than the sensitivity of our 
result to the accuracy of data - have been advanced. 

It is hoped that future detailed measurements will enable us to make quantitative 
comparisons. We are just at the beginning of the road, and problems like the role 
of surfactants or the stability of a type-A droplet - with respect to small displacements 
from the centre - need to be investigated carefully. 

Appendix A. The Stokes solution coefficients 
Let us define the following positive and finite-valued functions of 8: 

l - S  1 Fy,=-- - 

g1 = (4+7€+4-s2)hl, 

f = (1+€)(2+€+2€2)hl, 

h, = (1+2€)hl ,  

h, = (2+€)hl ,  

1 - e ~  1 + E + 8 2 + e 3 + 8 4 ’  

h, = (2+4e+6-s2+3-s3)hl, 

h = (3+6e+4s2+2-s3)hl, 

h, = (1+3-s+e2)hl. 

the coefficients are 

1 
[2ql3 + (1 -.) h4] = - UP), 1 A$l) = - 

K(1-C)  K(1-8) 

€3 €3  

K(1--B) K(1--E) 
q l )  = - [2vl3 c2h, + (1 - E )  h,] = ~ b e ) ,  

CCU = -- 1 
[2T13 h, + (1 - €) h3] = -- c(1) 

1 
K( l -€)  K(1-C)  ’ 
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Appendix B. Explicit expression for the deformations 
arid I P .  Applying all of the eight 

boundary conditions allows us after a considerable amount of manipulations to  
determine the deformations (3.20). With the definition 

(B 1) 

(B 2) 

(B 3) 

Equation (3.18) involves the functions 

y(Q(r)  = B$O[3C$O r-l+A('O 2 r-3+1B(O 4 2  r-6]+C(i)[A(i) 2 2  rZ+W(O 3 2 T I  4 

p2V) -PI2 P W )  = p ( 1 )  -p12 y(l)(l) + E, , ,  

B ( l ) ( ~ ) - ~ 3 1  p 3 ' ( ~ )  = f1 ) (e ) -~31 Y ( ~ ) ( E )  + ~ 1 3 .  

it may then be shown that 

I n  order to write down the functions E ~ ,  in a somewhat-condensed form it proves 
convenient to  introduce the functions 

fl = 4+ 1 6 ~ + 4 0 ~ ~ + 5 5 ~ ~ + 4 0 ~ ~ +  16e5+4e6, 

f2 = 2 +4e+ 8 8  + 7~~ + 8s4 +4e5 + 28,  

(B 4a)  

(B 4b) 

i.e. 

we introduce 
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Letting now 

c =-- {ai1)[q1,(l+s+62)+$(1--) (2+€)1 
30K2 

we have 

'13 '1 + '21 '14 '2- 

l--E 

Here we have introduced the functions 

233 

(B 14a) 

(B 14b) 

(B 15a) 

(B 15b) 
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